Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Eur Heart J ; 43(39): 3947-3956, 2022 10 14.
Article in English | MEDLINE | ID: covidwho-2319780

ABSTRACT

AIMS: In a retrospective analysis of dal-Outcomes, the effect of dalcetrapib on cardiovascular events was influenced by an adenylate cyclase type 9 (ADCY9) gene polymorphism. The dal-GenE study was conducted to test this pharmacogenetic hypothesis. METHODS AND RESULTS: dal-GenE was a double-blind trial in patients with an acute coronary syndrome within 1-3 months and the AA genotype at variant rs1967309 in the ADCY9 gene. A total of 6147 patients were randomly assigned to receive dalcetrapib 600 mg or placebo daily. The primary endpoint was the time from randomization to first occurrence of cardiovascular death, resuscitated cardiac arrest, non-fatal myocardial infarction, or non-fatal stroke. After a median follow-up of 39.9 months, the primary endpoint occurred in 292 (9.5%) of 3071 patients in the dalcetrapib group and 327 (10.6%) of 3076 patients in the placebo group [hazard ratio 0.88; 95% confidence interval (CI) 0.75-1.03; P = 0.12]. The hazard ratios for the components of the primary endpoint were 0.79 (95% CI 0.65-0.96) for myocardial infarction, 0.92 (95% CI 0.64-1.33) for stroke, 1.21 (95% CI 0.91-1.60) for death from cardiovascular causes, and 2.33 (95% CI 0.60-9.02) for resuscitated cardiac arrest. In a pre-specified on-treatment sensitivity analysis, the primary endpoint event rate was 7.8% (236/3015) in the dalcetrapib group and 9.3% (282/3031) in the placebo group (hazard ratio 0.83; 95% CI 0.70-0.98). CONCLUSION: Dalcetrapib did not significantly reduce the risk of occurrence of the primary endpoint of ischaemic cardiovascular events at end of study. A new trial would be needed to test the pharmacogenetic hypothesis that dalcetrapib improves the prognosis of patients with the AA genotype. CLINICAL TRIAL REGISTRATION: Trial registration dal-GenE ClinicalTrials.gov Identifier: NCT02525939.


Subject(s)
Acute Coronary Syndrome , Anticholesteremic Agents , Heart Arrest , Myocardial Infarction , Stroke , Acute Coronary Syndrome/drug therapy , Acute Coronary Syndrome/genetics , Adenylyl Cyclases/genetics , Adenylyl Cyclases/therapeutic use , Amides , Anticholesteremic Agents/therapeutic use , Double-Blind Method , Esters , Humans , Myocardial Infarction/drug therapy , Myocardial Infarction/genetics , Pharmacogenetics , Retrospective Studies , Stroke/drug therapy , Sulfhydryl Compounds
2.
Ann Med ; 55(1): 2199218, 2023 12.
Article in English | MEDLINE | ID: covidwho-2305381

ABSTRACT

Patients with hypercholesterolemia often have coronary microvascular dysfunction (CMD). Viral infections, such as the SARS-CoV-2 infection, may also result in CMD. Three non-randomized studies have shown significant beneficial effects of statins on CMD in non-infected patients. Similarly, in SARS-CoV-2 - infected patients one beneficial mechanism of action of statins may be the amelioration of endothelial dysfunction, which is a major driver of CMD. Apart from statins, lipoprotein apheresis and PCSK9 inhibitors can also improve or even reverse CMD. The potential reversal of CMD by using effective cholesterol-lowering medications during and after COVID-19 infection, especially in hypercholesterolemic COVID-19 patients, is important.KEY MESSAGESCoronary microvascular dysfunction (CMD) is common in patients hospitalized with SARS-CoV-2 infectionThree nonrandomized studies in non-infected patients are showing the beneficial effects of statin treatment on CMDEffective cholesterol-lowering medication during and after SARS-CoV-2 infection, especially in hypercholesterolemic COVID-19 patients, is of great significance.


Subject(s)
Anticholesteremic Agents , COVID-19 , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Proprotein Convertase 9 , COVID-19/complications , Cholesterol, LDL , Microcirculation , SARS-CoV-2 , Anticholesteremic Agents/therapeutic use , Anticholesteremic Agents/pharmacology , Cholesterol
3.
Microb Pathog ; 179: 106096, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2250437

ABSTRACT

Cholesterol plays critical functions in arranging the biophysical attributes of proteins and lipids in the plasma membrane. For various viruses, an association with cholesterol for virus entrance and/or morphogenesis has been demonstrated. Therefore, the lipid metabolic pathways and the combination of membranes could be targeted to selectively suppress the virus replication steps as a basis for antiviral treatment. U18666A is a cationic amphiphilic drug (CAD) that affects intracellular transport and cholesterol production. A robust tool for investigating lysosomal cholesterol transfer and Ebola virus infection is an androstenolone derived termed U18666A that suppresses three enzymes in the cholesterol biosynthesis mechanism. In addition, U18666A inhibited low-density lipoprotein (LDL)-induced downregulation of LDL receptor and triggered lysosomal aggregation of cholesterol. According to reports, U18666A inhibits the reproduction of baculoviruses, filoviruses, hepatitis, coronaviruses, pseudorabies, HIV, influenza, and flaviviruses, as well as chikungunya and flaviviruses. U18666A-treated viral infections may act as a novel in vitro model system to elucidate the cholesterol mechanism of several viral infections. In this article, we discuss the mechanism and function of U18666A as a potent tool for studying cholesterol mechanisms in various viral infections.


Subject(s)
Anticholesteremic Agents , Hemorrhagic Fever, Ebola , Animals , Humans , Antiviral Agents/pharmacology , Cholesterol , Anticholesteremic Agents/pharmacology
4.
J Clin Lipidol ; 17(2): 219-224, 2023.
Article in English | MEDLINE | ID: covidwho-2227889

ABSTRACT

BACKGROUND: The effect of SARS-CoV-2 infection in blood lipids of homozygous familial hypercholesterolemia (HoFH) has not been explored. CASE SUMMARY: We report a case of a 43-year-old male patient with -/-LDLR HoFH with previous history of premature coronary artery disease, coronary artery bypass graft (CABG) and surgical repair of aortic valve stenosis. He presented with an abrupt decrease of his blood lipid levels during acute infection with SARS-CoV2 and subsequently a rebound increase above pre-infection levels, refractory to treatment including LDL-apheresis, statin, ezetimibe and lomitapide up-titration to maximum tolerated doses. Markers of liver stiffness were closely monitored, increased at 9 months and decreased at 18 months after the infection. Potential interactions of hypolipidemic treatment with the viral replication process during the acute phase, as well as therapeutic dilemmas occurring in the post infection period are discussed.


Subject(s)
Anticholesteremic Agents , COVID-19 , Homozygous Familial Hypercholesterolemia , Hypercholesterolemia , Hyperlipoproteinemia Type II , Adult , Humans , Male , Anticholesteremic Agents/therapeutic use , Homozygote , Hypercholesterolemia/drug therapy , Hyperlipoproteinemia Type II/complications , Hyperlipoproteinemia Type II/genetics , Lipids , RNA, Viral/therapeutic use , SARS-CoV-2
6.
Clin Investig Arterioscler ; 34(5): 245-252, 2022.
Article in English, Spanish | MEDLINE | ID: covidwho-1739546

ABSTRACT

OBJECTIVES: MEMOGAL study (NCT04319081) is aimed at evaluating changes in cognitive function in patients treated with PCSK9 inhibitors (PCSK9i). This is the first analysis: (1) discussion about the role of the Hospital Pharmacists during the pandemic, and also the assessment of the impact of COVID-19 in the lipid control; (2) descriptive analysis; (3) effectiveness in LDL cholesterol (LDL-c) reduction of alirocumab and evolocumab; (4) communicate PCSK9i safety. MATERIAL AND METHODS: It is a prospective Real-World Evidence analysis of patients that take PCSK9i for the first time in the usual clinical practice, and they are included after the first dispensation in the public pharmacy consultations of 12 Hospitals in Galicia from May 2020 to April 2021. Baseline values of LDL-c are the previous values before taking PCSK9 and the follow-up values are in 6 months time. RESULTS: 89 patients were included. 86.5% with cardiovascular disease and 53.9% with statin intolerances. 78.8% of the patients were treated with high intensity statins. Statins most used were rosuvastatin (34.1%) and atorvastatin (20.5%). Baseline value of LDL-c was 148mg/dL and the follow-up value was 71mg/dL. The baseline value of patients treated with alirocumab (N=43) was 144mg/dL and 73mg/dL in the follow-up. With evolocumab (N=46) was 151mg/dL in basaline and 69mg/dL in follow-up. The LDLc- reduction was 51.21% with evolocumab and 51.05% with alirocumab. 43.1% of the patients showed values >70mg/dL in six month time; 19.4% between 69mg/dl and 55mg/dL and 37.5% <55mg/dL. 58.3% of the patients achieved a reduction >50% of LDL-c. The adverse events were: injection point reaction (N=2), myalgias (N=1), flu-like symptoms (N=1) and neurocognitive worsening (N=1). CONCLUSIONS: (1) Despite the number of prescriptions was reduced because of the pandemic, the lipid control was not affected. (2) Half of the patients treated with PSCK9i is due to statins intolerance and the 86% is for secondary prevention. (2) The reduction results were similar to pivotal clinical trials. Despite this, 39% of the total of the patients and 60% of patients with dual teraphy did not reach the goal of ESC/EAS guidelines (<55mg/dL and/or reduction>50%). There were not significant differences between evolocumab and alirocumab: 51.21% vs 51.05% (P=.972). (3) There were not any adverse events of special interest. The possible neurocognitive worsening will be studied as the primary endpoint once the MEMOGAL study has been completed.


Subject(s)
Anticholesteremic Agents , COVID-19 Drug Treatment , COVID-19 , PCSK9 Inhibitors , Anticholesteremic Agents/adverse effects , COVID-19/epidemiology , Cholesterol, LDL , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/adverse effects , PCSK9 Inhibitors/adverse effects , Pandemics , Proprotein Convertase 9 , Prospective Studies
7.
Curr Atheroscler Rep ; 24(1): 61-72, 2022 01.
Article in English | MEDLINE | ID: covidwho-1653753

ABSTRACT

PURPOSE OF REVIEW: This review highlights major studies across a broad array of topics presented at the virtual 2021 American Heart Association (AHA) Scientific Sessions. RECENT FINDINGS: Assessed studies examine a remotely delivered hypertension and lipid program in 10,000 patients across a diverse healthcare network; a cluster-randomized trial of a village doctor-led intervention for hypertension control; empagliflozin in heart failure with preserved ejection fraction (EMPEROR-Preserved); efficacy and safety of empagliflozin in hospitalized heart failure patients (EMPULSE); icosapent ethyl versus placebo in outpatients with coronavirus disease 2019 (PREPARE-IT 2); clinical safety, pharmacokinetics, and low-density lipoprotein cholesterol-lowering efficacy of MK-0161, an oral proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitor; and effects of aspirin on dementia and cognitive impairment in the ASCEND trial. Research presented at the 2021 AHA Scientific Sessions emphasized the importance of interventions for cardiovascular disease prevention.


Subject(s)
Anticholesteremic Agents , Cardiovascular Diseases , American Heart Association , Anticholesteremic Agents/therapeutic use , COVID-19 , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/prevention & control , Humans , Proprotein Convertase 9 , Randomized Controlled Trials as Topic , United States/epidemiology
8.
Cell Metab ; 33(10): 1911-1925, 2021 10 05.
Article in English | MEDLINE | ID: covidwho-1588059

ABSTRACT

High levels of cholesterol are generally considered to be associated with atherosclerosis. In the past two decades, however, a number of studies have shown that excess cholesterol accumulation in various tissues and organs plays a critical role in the pathogenesis of multiple diseases. Here, we summarize the effects of excess cholesterol on disease pathogenesis, including liver diseases, diabetes, chronic kidney disease, Alzheimer's disease, osteoporosis, osteoarthritis, pituitary-thyroid axis dysfunction, immune disorders, and COVID-19, while proposing that excess cholesterol-induced toxicity is ubiquitous. We believe this concept will help broaden the appreciation of the toxic effect of excess cholesterol, and thus potentially expand the therapeutic use of cholesterol-lowering medications.


Subject(s)
Atherosclerosis/metabolism , COVID-19/metabolism , Cholesterol/metabolism , Hypercholesterolemia/metabolism , Animals , Anticholesteremic Agents/therapeutic use , Atherosclerosis/diagnosis , Atherosclerosis/drug therapy , Atherosclerosis/epidemiology , Biomarkers/metabolism , COVID-19/diagnosis , COVID-19/epidemiology , Humans , Hypercholesterolemia/diagnosis , Hypercholesterolemia/drug therapy , Hypercholesterolemia/epidemiology , Prognosis , Risk Factors , COVID-19 Drug Treatment
9.
Drugs ; 81(3): 389-395, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-1130968

ABSTRACT

Inclisiran (Leqvio®; Novartis) is a first-in-class, cholesterol-lowering small interfering RNA (siRNA) conjugated to triantennary N-acetylgalactosamine carbohydrates (GalNAc). Inclisiran received its first approval in December 2020 in the EU for use in adults with primary hypercholesterolaemia (heterozygous familial and non-familial) or mixed dyslipidaemia, as an adjunct to diet. It is intended for use in combination with a statin or a statin with other lipid-lowering therapies in patients unable to reach low-density lipoprotein cholesterol goals with the maximum tolerated statin dose. In patients who are statin-intolerant or for whom a statin is contraindicated, inclisiran can be used alone or in combination with other lipid-lowering therapies. Inclisiran is administered as a twice-yearly subcutaneous injection. This article summarizes the milestones in the development of inclisiran leading to this first approval for primary hypercholesterolaemia or mixed dyslipidaemia.


Subject(s)
Anticholesteremic Agents/therapeutic use , Dyslipidemias/drug therapy , Hypercholesterolemia/drug therapy , RNA, Small Interfering/therapeutic use , Anticholesteremic Agents/administration & dosage , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/administration & dosage , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Injections, Subcutaneous , RNA, Small Interfering/administration & dosage
11.
Curr Atheroscler Rep ; 22(11): 64, 2020 09 01.
Article in English | MEDLINE | ID: covidwho-738677

ABSTRACT

PURPOSE OF REVIEW: Statins are first-line therapy for lowering low-density lipoprotein (LDL) cholesterol in familial hypercholesterolemia (FH), particularly in heterozygous patients. We review advances and new questions on the use of statins in FH. RECENT FINDINGS: Cumulative evidence from registry data and sub-analyses of clinical trials mandates the value of statin therapy for prevention of atherosclerotic cardiovascular disease (ASCVD) in FH. Statins are safe in children and adolescents with FH, with longer term cardiovascular benefits. The potentially toxic effects of statins in pregnancy need to be considered, but no association has been reported in prospective cohort studies with birth defects. There is no rationale for discontinuation of statins in elderly FH unless indicated by adverse events. FH is undertreated, with > 80% of statin-treated FH patients failing to attain LDL cholesterol treatment targets. This may relate to adherence, tolerability, and genetic differences in statin responsiveness. Statin treatment from childhood may reduce the need for stringent cholesterol targets. Combination of statins with ezetimibe and PCSK9 inhibitors significantly improves the efficacy of treatment. Whether statin use could improve the clinical course of FH patients with COVID-19 and other respiratory infections remains an unsolved issue for future research. Statins are the mainstay for primary and secondary prevention of ASCVD in FH. Sustained long-term optimal statin treatment from an early age can effectively prevent ASCVD over decades of life. Despite their widespread use, statins merit further investigation in FH.


Subject(s)
Coronavirus Infections/epidemiology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Hyperlipoproteinemia Type II , Medication Therapy Management , Pneumonia, Viral/epidemiology , Anticholesteremic Agents/classification , Anticholesteremic Agents/pharmacology , Betacoronavirus , COVID-19 , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/prevention & control , Humans , Hyperlipoproteinemia Type II/drug therapy , Hyperlipoproteinemia Type II/epidemiology , Pandemics , SARS-CoV-2
13.
Turk Kardiyol Dern Ars ; 48(4): 410-424, 2020 06.
Article in English | MEDLINE | ID: covidwho-622990

ABSTRACT

OBJECTIVE: The aim of this study was to evaluate the effectiveness of plants used in the formulations of traditional Chinese medicine (TCM), which were also used in clinical trials to treat patients with the novel coronavirus COVID-19, and to assess their effects on the cardiovascular system. METHODS: A literature review of PubMed, ResearchGate, ScienceDirect, the Cochrane Library, and TCM monographs was conducted and the effects of the plants on the cardiovascular system and the mechanisms of action in COVID-19 treatment were evaluated. RESULTS: The mechanism of action, cardiovascular effects, and possible toxicity of 10 plants frequently found in TCM formulations that were used in the clinical treatment of COVID-19 were examined. CONCLUSION: TCM formulations that had been originally developed for earlier viral diseases have been used in COVID-19 treatment. Despite the effectiveness seen in laboratory and animal studies with the most commonly used plants in these formulations, the clinical studies are currently insufficient according to standard operating procedures. More clinical studies are needed to understand the safe clinical use of traditional plants.


Subject(s)
Cardiovascular System/drug effects , Coronavirus Infections/therapy , Drugs, Chinese Herbal/therapeutic use , Medicine, Chinese Traditional , Pneumonia, Viral/therapy , Animals , Anti-Arrhythmia Agents/pharmacology , Anti-Arrhythmia Agents/therapeutic use , Anti-Arrhythmia Agents/toxicity , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/toxicity , Anticholesteremic Agents/pharmacology , Anticholesteremic Agents/therapeutic use , Anticholesteremic Agents/toxicity , Antihypertensive Agents/pharmacology , Antihypertensive Agents/therapeutic use , Antihypertensive Agents/toxicity , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Antiviral Agents/toxicity , COVID-19 , Calcium Channel Blockers/pharmacology , Calcium Channel Blockers/therapeutic use , Calcium Channel Blockers/toxicity , Drug Interactions , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/toxicity , Humans , Pandemics , Platelet Aggregation Inhibitors/pharmacology , Platelet Aggregation Inhibitors/therapeutic use , Platelet Aggregation Inhibitors/toxicity , Vasodilator Agents/pharmacology , Vasodilator Agents/therapeutic use , Vasodilator Agents/toxicity
14.
Cell Mol Biol (Noisy-le-grand) ; 66(3): 221-229, 2020 Jun 05.
Article in English | MEDLINE | ID: covidwho-603065

ABSTRACT

It can be misleading to think that the new severe acute respiratory syndrome coronavirus (SARS-CoV2) which has a very strong mutation and adaptation capabilities, uses only the angiotensin-converting enzyme II (ACE2) pathway to reach target cells. Despite all the precautions taken, the pandemic attack continues and the rapid increase in the number of deaths suggest that this virus has entered the cell through different pathways and caused damage through different mechanisms. The main reason why the ACE2 pathway comes to the fore in all scientific studies is that this receptor is located at the entry point of basic mechanisms that provide alveolo-capillary homeostasis. SARS-CoV-2 has to use nuclear factor-κB (NF-kB), caveloae, clathrin, lipoxin, serine protease and proteasome pathways in addition to ACE2 to enter the target cell and initiate damage. For this reason, while new drug development studies are continuing, in order to be beneficial to patients in their acute period, it is imperative that we are able to come up with drugs that activate or inhibit these pathways and are currently in clinical use. It is also critical that we adopt these new pathways to the treatment of pregnant women affected by SARS-CoV-2, based on the scientific data we use to treat the general population.


Subject(s)
Betacoronavirus/metabolism , Caveolin 1/metabolism , Coronavirus Infections/metabolism , Lipoxins/metabolism , NF-kappa B/metabolism , Pneumonia, Viral/metabolism , Pregnancy Complications, Infectious/metabolism , Proteasome Endopeptidase Complex/metabolism , Angiotensin II Type 1 Receptor Blockers/therapeutic use , Angiotensin-Converting Enzyme 2 , Anticholesteremic Agents/therapeutic use , Binding Sites , COVID-19 , Coronavirus Infections/drug therapy , Coronavirus Infections/transmission , Coronavirus Infections/virology , Drug Discovery/methods , Drug Repositioning/methods , Female , Humans , Infectious Disease Transmission, Vertical/prevention & control , NF-kappa B/antagonists & inhibitors , Off-Label Use , Pandemics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/drug therapy , Pneumonia, Viral/transmission , Pneumonia, Viral/virology , Pregnancy , Pregnancy Complications, Infectious/virology , Proteasome Inhibitors/therapeutic use , SARS-CoV-2 , Serine Endopeptidases/metabolism , Serine Proteinase Inhibitors/therapeutic use , Virus Internalization
16.
J Lipid Res ; 61(7): 972-982, 2020 07.
Article in English | MEDLINE | ID: covidwho-382050

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus (SARS-CoV)-2 has resulted in the death of more than 328,000 persons worldwide in the first 5 months of 2020. Herculean efforts to rapidly design and produce vaccines and other antiviral interventions are ongoing. However, newly evolving viral mutations, the prospect of only temporary immunity, and a long path to regulatory approval pose significant challenges and call for a common, readily available, and inexpensive treatment. Strategic drug repurposing combined with rapid testing of established molecular targets could provide a pause in disease progression. SARS-CoV-2 shares extensive structural and functional conservation with SARS-CoV-1, including engagement of the same host cell receptor (angiotensin-converting enzyme 2) localized in cholesterol-rich microdomains. These lipid-enveloped viruses encounter the endosomal/lysosomal host compartment in a critical step of infection and maturation. Niemann-Pick type C (NP-C) disease is a rare monogenic neurodegenerative disease caused by deficient efflux of lipids from the late endosome/lysosome (LE/L). The NP-C disease-causing gene (NPC1) has been strongly associated with viral infection, both as a filovirus receptor (e.g., Ebola) and through LE/L lipid trafficking. This suggests that NPC1 inhibitors or NP-C disease mimetics could serve as anti-SARS-CoV-2 agents. Fortunately, there are such clinically approved molecules that elicit antiviral activity in preclinical studies, without causing NP-C disease. Inhibition of NPC1 may impair viral SARS-CoV-2 infectivity via several lipid-dependent mechanisms, which disturb the microenvironment optimum for viral infectivity. We suggest that known mechanistic information on NPC1 could be utilized to identify existing and future drugs to treat COVID-19.


Subject(s)
Anticholesteremic Agents/therapeutic use , Antiviral Agents/therapeutic use , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Intracellular Signaling Peptides and Proteins/genetics , Niemann-Pick Disease, Type C/drug therapy , Pandemics , Pneumonia, Viral/drug therapy , Androstenes/therapeutic use , Angiotensin-Converting Enzyme 2 , Betacoronavirus/metabolism , Betacoronavirus/pathogenicity , COVID-19 , Cholesterol/metabolism , Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Drug Repositioning/methods , Humans , Hydroxychloroquine/therapeutic use , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Intracellular Signaling Peptides and Proteins/metabolism , Lysosomes/drug effects , Lysosomes/metabolism , Lysosomes/virology , Niemann-Pick C1 Protein , Niemann-Pick Disease, Type C/genetics , Niemann-Pick Disease, Type C/metabolism , Niemann-Pick Disease, Type C/pathology , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/diagnosis , Pneumonia, Viral/epidemiology , Protein Binding , Receptors, Virus/antagonists & inhibitors , Receptors, Virus/genetics , Receptors, Virus/metabolism , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL